

UAV Canopy Height Models and Vegetation Indices for Assessing Yield and Stress Traits in Spring Wheat Breeding

Māra Bleidere, Zaiga Jansone

Department of Crop Breeding and Agroecology, Institute of Agricultural Resources and Economics, Latvia mara.bleidere@arei.lv

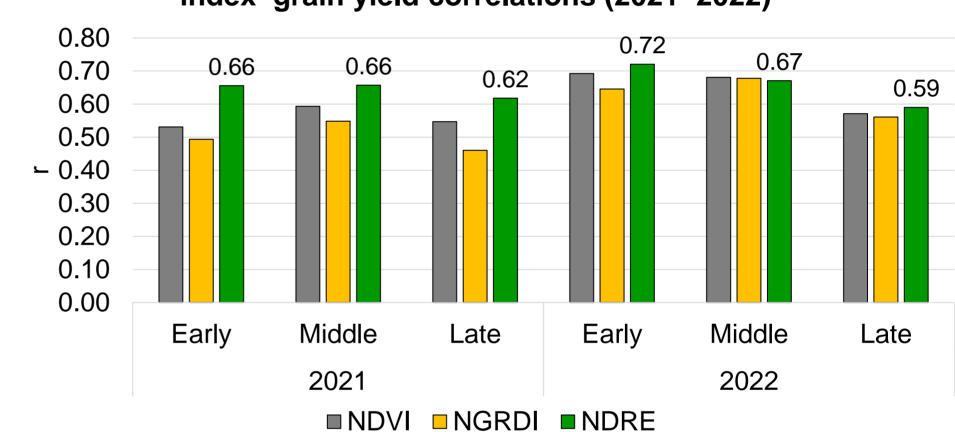
INTRODUCTION

High-throughput phenotyping (HTP) is a key tool in modern wheat breeding, enabling rapid, large-scale, and non-destructive trait assessment. UAV-based HTP with multispectral and RGB sensors allows monitoring of canopy growth, architecture, and stress responses. Trait associations can vary across environments and growth stages; drought, lodging, and phenological differences (especially days to heading, DH) can confound spectral measurements.

The aim of research: Assess the consistency of vegetation indices (VIs) and UAV canopy height models (CHM) for predicting grain yield (GY) in spring wheat, accounting for phenology and stage-dependent growth dynamics.

MATERIALS AND METHODS

- ❖ Field trials: AREI Stende Research Centre, Latvia, 2021–2022; 300 spring wheat genotypes in 5 m² plots with two replications.
- ❖ Weather: 2021 hot, drought stress; 2022 cooler, wetter, more lodging.
- ❖ Field traits: Plant height (PH), days to heading (DH), grain yield (GY), drought tolerance (DT, 2021; 1 = high, 5 = low), lodging resistance (LR, 2022; 1 = lodged, 9 = no lodging).
- ❖ DH groups (balanced) early / middle / late: 2021 ≤52 / 53 / ≥54; 2022 ≤63 / 64 / ≥65.
- **A UAV phenotyping:** Phantom 4Pro with multispectral camera at 20 m; vegetation indices (NDVI, NGRDI, NDRE) calculated from mid-milk stage (GS75).
- ❖ CHM: Difference between digital surface and terrain models; measured mid-season (07.07) in 2021, and mid-season (30.06) and late-season (12.08) in 2022.


RESULTS

Correlation coefficients between UAV-derived vegetation indices and field-measured agronomic traits.

Trait	NDVI	NGRDI	NDRE		
2021					
Grain yield	0.55***	0.51***	0.65***		
Days to heading	0.58***	0.60***	0.51***		
Drought tolerance	-0.21***	-0.19***	-0.24***		
Lodging resistance	0.02	-0.12**	0.09*		
Plant height	0.20***	0.23***	0.22***		
2022					
Grain yield	0.64***	0.62***	0.66***		
Days to heading	0.29***	0.32***	0.25***		
Lodging resistance	0.10*	0.05	0.13**		
Plant height	-0.03	0.00	-0.05		

* p<0.05; **p<0.01; ***p<0.001

Effect of early, middle, and late heading groups on UAV vegetation index–grain yield correlations (2021–2022)

Early = ≤52 (2021) / ≤63 (2022), Middle = 53 / 64, Late = ≥54 / ≥65

UAV CHM correlations with manual plant height (PH) and lodging resistance (LR) at mid- and late growth stages

Stage	Trait	r	Interpretation	
2021				
Mid-season	CHM vs. PH	0.47***	UAV CHM reflects plant height well	
2022				
Mid-season	CHM vs. PH	0.55***	UAV CHM reflects plant height well	
	CHM vs. LR	-0.37***	Taller canopies start showing slight	
			lodging tendency	
Late season			Weak correlation - canopy height	
	CHM vs. PH		signal affected by lodging and	
			senescence	
	CHM vs. LR	$\mathbf{u} \cdot \mathbf{n}$	Strong correlation - UAV CHM	
			effectively captures lodging severity	

p<0.01; *p<0.001

Field trial of spring wheat in 2021 at milk growth stage

CONCLUSION

- ❖ UAV vegetation indices (VIs), particularly **NDRE**, were strongly associated with grain yield (GY) across years.
- Grouping by phenology (days to heading, DH) reduced stage-related variability and strengthened VI–GY relationships, especially in early and middle DH groups.
- UAV canopy height models (CHM) captured plant height mid-season and lodging late-season, demonstrating stage-dependent utility.
- ❖ VIs detected **drought effects in 2021** (weak negative correlations with drought tolerance), which may partly reduce VI–GY relationships under stress.
- Seasonal differences between 2021 (drier, warmer) and 2022 (cooler, wetter) influenced correlation strengths, highlighting environmental effects on UAV-based phenotyping.
- Phenology-aware, multi-temporal UAV phenotyping provides robust, non-destructive assessment of yield and stress traits, supporting efficient wheat breeding.

ACKNOWLEDGEMENT

EEA/Baltic Research Programme grant project «NOBALwheat – breeding toolbox for sustainable food system of the NOrdic BALtic region»

